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Abstract-In this paper it is shown how the displacement formulation of the theorem of minimum potential
energy can be used with the finite element method to approximate both compressible and incompressible
equilibria of linearly elastic, isotropic solids. The procedure is shown to be equivalent to the more
complicated "mixed principle" technique, due to the use of numerical integration applied to the computation
of the element stiffness matrices. Criteria for the choice of integration formulas and elements are discussed,
and numerical examples are presented.

INTRODUCTION

In the linear theory of elasticity a distinction has traditionally been made between the
compressible and incompressible cases, because at the point of exact incompressibility, the
displacement form of the compressible field equations contains terms which become infinite. The
field equations for the incompressible case form an expanded system with an additional equation
and a new unknown, the hydrostatic pressure. L. R. Herrmann and his coUeagues[l-3] have
shown that the form of the field equations for the incompressible case leads to a
displacement-pressure formulation valid for all values of the compressibility, and that there is an
associated variational statement of the equilibrium.

The elegance of the new variational statement notwithstanding, it is more computationally
cumbersome than the variational statement of equilibrium in the compressible case, the theorem
of minimum potential energy, when approximations are sought on finite-degree-of-freedom trial
spaces. This is in part due to the introduction of additional pressure unknowns, and in part due to
the lack of positive definiteness of the "mixed" Herrmann variational principle. To maximize
computational efficiency, computations are often performed using the standard formulation for
solutions in the compressible range, and using the mixed formulation for nearly incompressible
and incompressible solutions. It will be shown that one unified approach may be taken, and one
computer program may be used for all values of the compressibility. It will be shown that the
incompressible case can be handled by choosing a small but non-zero value of the compressibility
for which the "compressibility error" is on the same level as other sources of error. Numerical
integration of the element stiffness matrices is used in such a way as to make the numerically
integrated theorem of minimum potential energy mathematically equivalent to the Herrmann
variational statement, thus combining the computational advantages of the former with the
theoretical desirability of the latter.

THE VARIATIONAL APPROXIMATIONS

The stresses and strains are put into the usual vector form[4U and the tensor of isotropic
elastic constants e,lld has a representation as a 6x 6 matrix Dso that stress is related to strain by
(T =De. D has the form

D=2G{I+zE} (1)

where I is the 6 x 6 identity, and EIj = 1, i, j :s 3 and zero elsewhere. z == v /0 - 2v); G is the shear

tThe research presented here was done white the author was a doctoral candidate at Boston University and was
sponsored in part by ONR contract NOOOI4-67-A-Q280.0004. The author's current address is: Polymers Division (311.01),
National Bureau of Standards, Washington, DC 20234, U.S.A.

tIt is convenient here not to multiply the shear components by two in contrast to [4).
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modulus and v Poisson's ratio. By using D in the derivation of the form of the theorem of
minimum potential energy, it follows that the solution u to the compressible equilibrium problem
minimizes

(2)

where (J is the volume strain associated with the displacement field u, and the el are the
components of e associated with u. n is the reference configuration of the solid.

To obtain approximate solutions the finite element method is used. Following the derivation
of [4], a displacement trial space Sh is constructed using Co conforming elements (appropriate to
second order problems) and polynomial shape functions. h is the maximum element diameter.
The virtual work argument of [4] can be used to derive the matrix equations. By using D in this
form in the derivation, it is found that the stiffness matrix has the following form:

K = 2G(K2 +zK1). (3)

It will be assumed that the essential b.c. are such that the Korn inequality [5] guarantees the
positive definiteness of the "deviatoric" matrix K2 • The "volumetric" matrix K 1 is semidefinite,
and thus the discrete problem unique solution.

For Herrmann's principle the same displacement trial space Sh is used, but another trial space
Th is needed for the hydrostatic pressure H. Conformity is not required as H is not differentiated
in the Herrmann functional

J(u, H) = GL{e/ + e22+ e/ +2(e/ +e/ + e/) +2v(JH - v(l- 2v)H2} dv. (4)

Shape functions using the same geometrical elements as Sh with a (possibly) different
arrangement of nodes are chosen. The full trial space will be denoted by (Sh, Th

). The matrix of
the equations of stationarity of J on (S\ Th

) will be denoted by KH •

AN ERROR-BALANCING TECHNIQUE

In [6] Fried showed that the energy error introduced by assuming that a linearly elastic,
incompressible solid is slightly compressible is 0(E) where E == 1- 2v, and where an artificial v <!
is chosen reflecting the slight compressibility. Additional arguments from [7] lead to

Ilu - u*11t :5 CIE 1/2

IIH - H*I~:5 C2E

(Sa)

(5b)

where uis the slightly compressible displacement field and u* the incompressible field. Let (J be
the volume strain associated with u; H is the compressible pressure obtained from taking
H = (J IE, using the artificial v, and H* is the incompressible pressure. The C > 0 are constants
independent of v, and the norms are the Sobolev norms of order one and zero. In[6, 7] it is
assumed that the shear modulus G remains constant while v varies, implying the variation of
Young's modulus:

E =E(v)==2G(l+v). (6)

In [6] Fried uses (5) on which to base his proposal of "residual energy balancing" as a means
of using (2) to approximate incompressible equilibria. Using the displacements as an example, if p
is the degree of S\ (Sa) leads to

(7)

where C3h P is the discretization error in approximation of 0, the exact minimum of (2) with the
artificial v, by the finite element approximation uh using the same v. CIE 1/2 is the error in
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approximating the incompressible solution u* by u from (Sa). The idea is to choose v so that
E 1/2 =O(C3hP

). But unfortunately it is well known that the approximation capabilities of (2) on Sit
can deteriorate drastically as v -+t Close inspection of the error bound of [8] shows C3 =CME 1/2

which-if it were sharp-would indicate that the best possible combined error could be achieved
by choosing E =O(h P

) (or z :;;: vIE =O(h-P ». This would lead to total error in (7) of O(hp/2)-or
half the power of h in the compressible finite element error bound[8]. Experiments show that this
deterioration can occur in practice (see Figs. 1 and 2 and also [1]). Further experiments verify
that with z = O(h -P) a slow convergence rate can be achieved (see Fig. 1), but it is a poor rate of
convergence.

In order to make the error-balancing work, it will be necessary to modify the theorem of
minimum potential energy on Sit in such a way as to drastically reduce the coupling between the
value of v and the discretization error-Qr better still, to completely uncouple the discretization
error from the value of v, as can be done by proper choice of elements with (4).

In [6] Fried observed that the application of numerical integration apparently achieved the
desired uncoupling in an axisymmetric sphere problem. He offered the explanation that K. has no
null-space, and thus allowing z -+00 in (3) must force u-+0. Numerical integration singularizes KI

so that as z -+ 00, the solution is forced into the null-space rather than to zero. However, numerical
experiments show accuracy deterioration can occur even if KI is singular when exactly evaluated
(Fig. 1). In [9] Naylor discusses a series of experiments in which he used numerical integration to
evaluate K and found that by letting v -+!, in spite of wild stress oscillation in each element,
accurate stress values could be obtained by sampling at the integration points. He observed that
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Fig.•1. lluk
- u*ll with biquadratic Lagrange elements, using different choices of z and integration formulas

for kl .: (a) exact integration (3 x3Gauss) and z =O(h-"'), (b) exact integration and z =O(h-P
), (c) 2x2

Gauss and z = O(h-"'), (d) the compressible case (11 = 0.3).

the number of integration points used in evaluating K was crucial in determining whether or not
this would work. He made an attempt to predict the success of the numerical integration
technique by relating the number of degrees of freedom (henceforth "ooF") in Sit to the number
of integration points in the mesh. Independently, this author has performed a number of
experiments similar to those in [9] with very similar results. It was found that the basic conclusion
that numerical integration enables the uncoupling of discretization error from the value of v is a
sound one, and it does indeed involve the size of the null-space of K.. which in turn involves the
relationship between the number of ooF in Sit and the number of integration points, as well as
other factors not yet touched upon.
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AN EQUIVALENCE THEOREM

In computational practice it is often inconvenient to exactly evaluate the integrals in the
element matrices, so numerical integration is used to evaluate them. {Wk<} will denote the weights
and {fa = (~/, ~z<, gn} the evaluation points of the integration formula used in element e. A" ' "
over any matrix will indicate it has been evaluated by numerical integration. The same or
different numerical integration formula could be applied to the evaluation of the deviatoric
element matrices kz<as is applied to the volumetric element matrices kl<. It will be assumed that
kz< are evaluated by an integration formula which satisfies the stability and accuracy conditions
of [10, 8]. Kz is then positive definite. The choice of formulas for the kt < will be seen to be
governed by other criteria.

Numerical integration can also be used to evaluate KH • In what follows it will be assumed that
the same integration formula is used in each element to evaluate the e? terms in (4) as is used to
evaluate kz<. Likewise, it is assumed that the same formula is used in each element to evaluate the
terms containing H in (4) as is used for kl<. To obtain the main result of this section it is also
necessary to assume the following: First Wk< > o. Second, the {fk<} are chosen so that in the local
coordinate system-before any curving or isoperimetry-a polynomial element shape function
basis may be constructed in standard fashion, using the ~< for nodes-examples are cited in
Tables 1 and 2. Third, these element shape function bases are assembled into a global basis of a
trial space Tit without enforcing interelement continuity-this can be done even when more than
one ~< is mapped into one ~ by assigning a separate nodal value to each occurence of ~ as a ~<
in some element e. Such a Tit contains the nodal interpolate even to functions which are
discontinuous at interelement boundaries. Under these assumptions, the use of numerical
integration serves as more than just a convenient tool for the evaluation of integrals. The
following theorem can be proved:

Theorem: The solution ult E Sit obtained by minimizing I (u) on Sit, making use of numerical
integration to evaluate the element stiffness matrices, is also the displacement part of a stationary
point (ult, Hit) of J(u, H) on (S\ Tit), where the same integration formulas used for l(u) are used
to evaluate the element matrices associated with J(u, H). The nodes of Tit are the integration
points used to evaluate the volumetric terms of l(u) and the terms in J(u, H) containing H. If 9"

Table 1. Elements/integration fonnulas in 2dimensions passingR.Il and RIll. DOFcalculated up to O(N.. )

Sh Element Type Integration Formula Tn Element Type DOF(Z)

-

Bilinear Lagrange 1 x 1 Gauss Constant N
2
.s.

G(N.s)Linear Triangle 1 pt. J d.p. - 1 Constant

Biquadratic Lagrange 2 :It 2 Gauss Bilinear Lagrange 4N
Z
.s

Quadratic Triangle 3 pt .• d.p. - 2 Linear Triangle 2N
2
.s

Quadratic: Serendipity 2 x 2 Gauss Bilinear Lagrange 2~.s

Bicub1c Lagrange 3 x 3 Gauss Biquadratic Lagrange 9N
2
.s

Cubic:: Triangle 6 pt., d. p. - 4 Quadratic Triangle 6~.s

Cubic Serendipi ty 3 x 3 Gauss Biquadratic Lagrange N
2
.s

Mesh Types: N.s-
N.s-

"EEr "~.....s es

~ 1
I I, I,

rectangular
I t-riangulat:

"degree of precision l1
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Table 2. Elements/integration formulas in 3dimensions passingR.II and R.III. DOF calculated up to O(N~.)·

Sh Element Type Integration Formula Th Elemen t Type DOF(Z)

Trilinear Lagrange 1 x 1 x 1 Gauss Constant 2N
3..

Linear Tetrahedron Ipt.,d.p.t • 1 Constant 0

Trlquadratic Lagrange 2x2x2Gau88 Trilinear Lagrange 16N
3e.

Quadratic Tetrahedron 4 pt •• d.p. ·2 Linear Tetrahedron N
3
e.

Quadratic Serendipity 2x2x2Gau88 Trilinear La It'ange 4N
3
eo

Tricubic Lagrange 3x3x3Gaus8 Trlquadratic Lagrange 54N
3e.

Cubic Tetrahedron 10 pt •• d.p •• 4 Quadratic tetrahedron 19N~.

Cubic Serendipity 3x3x3Gau88 Triquadratlc Lagrange 0

.
Mesh types are 3-D generalizations of Table 1 meshes.

tlldegree of precls10n ll

73S

is the volume strain associated with uh and v <! is the Poisson's ratio appearing in l(u) and
1(u, H) then Oh 1(1- 2v) interpolates to H h at the integration points.

The proof of this theorem can be found in [7]. For v =!, 1(u, H) becomes a Lagrange
multiplier method with H the Lagrange multiplier. Allowing z -+ 00 in l(u) makes (2) into a
"penalty method"[ll] with penalty z enforcing zero volume strain as z -+00. The theorem
presented here may be related to theorems which identify penalty function methods with
Lagrange multiplier methods in the limit as the penalty tends to infinity[11]. But this theorem says
more, because it associates l(u) with 1(u, H) for each finite z, and identifies trial spaces Th from
which the Lagrange multipliers are drawn.

An important point to note is that the values of 0hIE at the integration points are the nodal
values of H\ which may be recovered throughout each element by using the shape functions of
T\ and used for stress calculations. Any wild oscillation of Oh IE between the integration points
can be ignored.

The theorem shows that discretization error in (1) can be uncoupled from the value of v to
whatever extent is possible using J(u, H) on (Sh, Th). Before we turn our attention to the
question of how to choose elements and integration formulas so that (Sh, Th

) produces the
desired uncoupling, it is important to note that there is a compeUing reason not to take z any
larger than necessary to make C1E 1/2 = O(h P

) in (7). Using arguments in [12], it can be shown that
the spectral condition number of K, C2(K), is O(zh -2). On the other hand, if the discretization
error in (7) is on the level of the optimal error bound for the approximation of strains in the finite
element method [8], then E can be taken to be O(h 2P

). This leads to an error balance in (7). Taking
this into account, it can be seen that to obtain the displacement formulation valid for any value of
the compressibility with associated exact Poisson's ratio v*, Kis used with z chosen according to

{

Ch-2p
Z - ,

- v*/(l-2v*),

v=_z_<v*
1+2z

otherwise. (8)

For compressible materials this amounts to using v* always; for incompressible materials an
artificial JI is always used. Nearly incompressible materials are treated as incompressible until v*
is reached. Alternatively, for nearly incompressible materials, v = v* could be used for all h,
by-passing (8). However, if v* is very close to!, this could adversely affect C2(K), and it might be
better to treat the material is incompressible via (8). The choice of "c" in (8) is not crucial, the
power of h being the important choice. When the z of (8) is used,
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(9)

The }ncrease of the condition number is a price that is paid in the use of this method
(C2(K)=O(h-2

) in the compressible case).

CHOICE OF ELEMENTS AND INTEGRATION FORMULAS

The question of achieving the desired uncoupling of errors in the two terms of the right-hand
side of (7) can be viewed in terms of constructing an (S", T"), as described in the previous
section, in such a way as to achieve this uncoupling for l(u, H). Inspection of (4) and KH shows
that, on (S\ Tit), the integration points (nodes of T") are points at which the exact
incompressibility of u" (JI) is enforced when JI =: t Analogously the integration points fulfill the
same role in the limit when z -+ 00 in (2), and it can be seen that, in the matrix equations associated
with (3), allowing z -+ 00 forces ult(v) to have a progressively larger component in the null-space of
K,. This null-space will be denoted by Z in what follows. Choosing the element types and
integration formulas then can be seen to imply a choice of the number of incompressibility
constraints (number of integration points) and the total number of DOF in the displacements. To
uncouple discretization error from the value of v in l(u, H), a balance must be achieved between
the total DOF in the displacements and the number of incompressibility constraints. It is also
required that T" be able to approximate pressures accurately and that the integration formulas
applied to the terms containing H in (4) be sufficiently accurate. These requirements come
together in three rules for the choice of elements/integration formulas. Let DOF(Z) be the
dimension of Z, and consider those meshes for which there is a well defined "number of elements
per side", N... such that M =: sN:.+O(N:.-') where s is some positive number, M is the number
of displacement nodes, and d is the actual number of spatial dimensions used.

R.I: (S", T") should be such that DOF(Z) = O(N~.).

R.Il: H deg SIt t = p, T" should be a trial space, assembled without shared nodes, with
deg T" =p -1, which contains H" such thatllH - H"l~~ ChPIIHI~ for every H withllHllp < 00.

R III: The integration formula applied to K, should be accurate enough to do the following
when applied to KH :

(a) compute f.4>1/1 dx, dx2 dx3 exactly, 4>, I/J E T",
(b) compute 1. OUl" /ax,,1/1 dx l dx2 dx3exactly, u" E SIt, '" E T",
(c) in addition to (a) and (b), whenever there are terms of degree higher than deg Sit in SIt or

deg T" in T", compute J, ur", dx, dx2 dx3exactly, if there are uJl terms in l(u, H).
R I is based on the heuristic argument that there should be only as many DOF in T" as in one

vector component of Sit. R.Il assures that T" can approximate pressures to the same order of h
that Sit can approximate strains, and RIII is needed to assure the perturbation in the solution u"
due to numerical integration does not exceed O(h2p). Details can be found in [7]. In smooth
curvilinear coordinate systems, RIll is exactly as stated; the Jacobian should not be included in
the integrals, and partial differentiation-not covariant-should appear in (b). (c) can be seen only
to apply in non-cartesian coordinates, because in cartesian coordinates, no UlH terms occur in
l(u, H).

Tables 1 and 2 illustrate some possible choices of elements and integration formulas which
pass R.Il and RIll (for the indicated choice of Tit, which is in general not unique, given a set of
integration points). The tables give DOF (Z) in the illustrated two and three dimensional meshes
in which two triangles occupy the same area as one rectangle, or five tetrahedra occupy the same
volume as one rectangular parallelepiped. The element types/shape functions are as described in
[4]. These can be generalized in the construction of T", to the case in which all nodes are
integration points interior to the element. The integration formulas are found in [4] and [8].
"Gauss" refers to the usual Gauss-Legendre product formulas. The DOF are given to the nearest
O(N:.-'). The main points illustrated by the tables are that for each degree, DOF(Z) is largest for
Lagrange elements; OOF(Z) increases with increasing degree for Lagrange elements, triangles
and tetrahedra, but decreases for serendipity elements. One dimensional elements are not shown
in tabular form, since it can be shown[7] that, for these elements, in deg SIt = p, basing T" on p

t"Degree of S'," i.e" the highest degree of a complete polynomial in S',
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Gauss points always assures that the error uncoupling in (7) can be achieved, even though R. I is
violated.

NUMERICAL EXPERIMENTS

As a test problem consider the plane-strain model of an infinite strip with a rectangular
cross-section, simply supported on opposing sides, loaded on the top surface by a load varying
between the supports like q cos x on [-1T /2, 1T /2], for some constant q, and free on the bottom
surface. The exact solution can be obtained and involves the products of circular and hyperbolic
sines and cosines. As a measure of displacement error

(10)

is used, where I'll is the square sum of nodal values, uh is the approximate solution and u* the
exact. Meshes like those illustrated on Table 1 were used.

Figure 1 shows that with biquadratic Lagrange elements, the accuracy in IHI is poor with
z =O(h -21') and exact integration. Only slight improvement is obtained by taking z =O(h -P), but
when the 2x 2Gauss formula is used, the accuracy in IHI compares very favorably to that of the
compressible case (II = 0.3). The 2x 2 Gauss formula passes all three rules of the previous
section. Figure 2shows that poor results can be obtained when R.I is violated while the other two
rules are passed. Figure 3 shows Iluh - ull where uis the exact solution for the artificial II as in
(7). These curves give an indication of the success in uncoupling discretization error from the
value of II for a fixed mesh, as II-+! (II = 0.4999999 is the largest II actually used).

In a variety of similar experiments in various coordinate systems, the same pattern emerges:
Lagrange elements provide accuracy in the incompressible case comparable to that of the
compressible case, when the integration formulas suggested in the tables are used; violations of
any of three rules can lead to loss of accuracy. Using either of the other two element/integration
formula families listed in the tables, which pass all rules but have smaller DOF(Z) than the
Lagrange elements, can lead to accuracy loss as II -+!. In addition, the following points emerge: in
rectangular elements, (J /E oscillates wildly in each element for small E. With Lagrange elements
integrated as in Table 1, accurate pressures can be obtained by sampling at the integration points,
whereas with serendipity elements, the pressures sampled at the integration points can be
markedly less accurate than with Lagrange elements. With triangular elements, the pressures do

LOG,.N.._
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~Olh'l

Fig. 2. 110" - u*11 with linear triangles and one pt. integration formula for k,.: (a) z = O(h -"), (h) the
compressible case (JI = 0.3).
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Fig. 3. 110" - ull-error in approximating the exact solution with the artificial II as this II~ t for three types of
quadratic elements, integrated with the formulas of Table I: (a) Lagrange, (b) serendipity, (c) triangle.

not oscillate wildly but can be much less accurate at the integration points than pressures at the
integration points in Lagrange elements. It has also been found that, corresponding to an increase
of DOF(Z) with degree, higher degree triangles produce more accurate results than lower degree
triangles. In contrast, the accuracy of serendipity elements can decrease with degree to the point
of divergence in IHI with cubics. The serendipity elements have OOF(Z) which decreases with
degree. The numerical experiments so far performed do not establish whether practical use may
be made of higher degree triangles and tetrahedra or quadratic serendipity elements. Naylor[9]
obtains good results in some problems with quadratic serendipity elements, but in other
problems, he reports that he needs to use averaging techniques to obtain accurate results. In
numerical experiments performed by this author with Lagrange elements, it has never been
necessary to use averaging to obtain accuracy in displacements, strains or pressures comparable
to the accuracy obtained in the compressible case.
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